
V. Verma, A. Jónsson, R. Simmons, T. Estlin, R. Levinson, “Survey of Command Execution Systems for NASA Robots and
Spacecraft”, “Plan Execution: A Reality Check” Workshop at The International Conference on Automated Planning &
Scheduling (ICAPS), 2005

Survey of Command Execution Systems

for NASA Spacecraft and Robots

Vandi Verma, Ari Jónsson, Reid Simmons, Tara Estlin, Rich Levinson

QSS / NASA Ames Research Center
 USRA-RIACS / NASA Ames Research Center

 Carnegie Mellon University
 Jet Propulsion Lab

 Attention Control Systems Inc.

MS 269-1 NASA Ames, Moffett Field CA 94035
 MS 269-2 NASA Ames, Moffett Field CA 94035

 3205 Newell-Simon Hall, Carnegie Mellon University, Pittsburgh, PA 15213
 M/S 126-347, JPL, Pasadena CA 91109-8099

 650 Castro St., Ste 120 PMB 197, Mountain View CA 94041

vandi@email.arc.nasa.gov, ajonsson@arc.nasa.gov, reids@cs.cmu.edu, tara.estlin@jpl.nasa.gov, rich@brainaid.com

Abstract
NASA spacecraft and robots operate at long distances from
Earth. Command sequences generated manually, or by
automated planners on Earth, must eventually be executed
autonomously on-board the spacecraft or robot. Software
systems that execute commands on-board are known
variously as execution systems, virtual machines, or
sequence engines. Every robotic system requires some sort
of execution system, but the level of autonomy and type of
control they are designed for varies greatly. This paper
presents a survey of execution systems with a focus on
systems relevant to NASA missions.

Introduction

As NASA’s missions become more complex, autonomy
becomes increasingly important to the success of those
missions. At the heart of such autonomous systems are
sub-systems, known variously as execution systems, virtual
machines, or sequence engines, that execute commands and
monitor the environment. Such execution systems vary in
sophistication, from those that execute linear sequences of
commands at fixed times, to those that can plan and
schedule in reaction to unexpected changes in the
environment.

For NASA missions, sophisticated execution systems are
highly desirable for several reasons. One is that NASA
spacecraft and robots typically operate far from Earth, and
so must take on significant responsibility for their own
health and safety. Second, models of robot sensors and
effectors are often uncertain and the environment is

generally only partially known and may even be dynamic.
To account for uncertainty even a simple deterministic
sequence of commands needs to use worst-case estimates
of action duration and resource use. In some cases even this
suboptimal sequence may not be robust to the uncertainty.

This paper presents a survey of execution systems that have
been developed for various applications. We focus on
those systems that are relevant to NASA-type applications.
Before presenting the individual systems, we define some
terms that are critical to understanding execution systems.

An executive is a software component that realizes pre-
planned actions. Executives are particularly useful in the
presence of uncertainty. Classical executive functions
include selecting an action from a set of possibilities based
on the current state of the robot and environment and
outcome of previous actions, hierarchical task
decomposition, coordinating simultaneous actions, resource
management, monitoring of states, resources command
status, and fault diagnosis and recovery. One way to view
an executive is as an onboard system that takes a plan that
assumes a certain level of certainty and expected outcomes
and executes it in an unknown and possibly dynamic
environment.

A plan is a series of actions designed to accomplish a set of
goals but not violate any resource limitations, temporal or
state constraints, or other spacecraft or rover operation
rules. Desirable characteristics of a plan are that it be valid,
complete and optimal (or of high quality). Algorithms that
can reason about achieving goals over a future time period
and in the face of various constraints are called planners.
However, a plan, as generated by most any current planner,

 2

still requires the help of an execution system to be useful
for real-world execution. Making these plans executable
may not involve complex AI algorithms, but is essential for
achieving the plan. In order to perform plan execution,
control structures such as conditional statements that catch
violated assumptions, looping constructs that can retry an
action until it succeeds, and more detailed descriptions of
preconditions that must be checked before an action is
executed must be added. Execution languages provide
constructs to represent essential plan execution information
in addition to the plan.

An execution language is a representation of actions and
plans that takes into account the state of robot and
environment at the time the action is executed, and the
interdependence between actions, in terms of temporal,
precedence, or other constraints.

Model-based systems are represented by a knowledge-base
(model) of its structure and behavior and are typically
specified using a declarative representation. In other
words, these models do not specify the sequence of actions
required to fulfill specific high-level goals of the system,
but instead they specify the expected effect each action or
external event may have on the modeled state. Models are
often specified in a modular manner, where only the local
effect of an event is described. Planners may use these
models to find sequences of actions directed toward the
goal or a fault diagnosis system may use them to detect and
identify faults.

Some execution systems use no automated planners; we
call these execution-only systems. Other execution systems
have explicit interfaces to planners, (through an execution
language or a standard format like XML), we call these
execution systems coupled with an external planner. Yet
another class of execution systems integrate planning and
execution more tightly by using a planner internally within
the execution system to select control actions. We call these
execution systems with internal planner. Note this is not a
mutually exclusive classification. Some execution system
may be used as an execution only system with manually
encoded plan execution, but may also have well defined
interfaces to one or more automated external planners that
may be used in other applications. An execution system
may also provide an external interface to a planner in
addition to having an internal planner. Finally, note that the
coupling of execution systems with external planners can
differ in tightness, ranging from infrequent requests for
assistance to continuous information sharing. In cases
where the coupling is tight, the combined functionality is
similar to integrated execution-planning systems.

Traditional Command Execution

At this time, most spacecraft and rovers are operated via
sequences of commands. The command sequences are
fairly simple in structure and the interpretation on board the
spacecraft is straightforward. Dynamic outcomes and
environmental uncertainties are handled partially by
making sequences conformant to possible outcomes, and
partially by relying on on-board fault detection and system
health software.
In this context of traditional spacecraft operations, the
executive is the flight software system on board the
spacecraft; more specifically, the sequence execution
system and the health monitoring and fault detection
system. The execution language is simple; an execution
plan is a fairly small set of branching command sequences
and sub-sequences, where each command is either executed
at a specific time, or immediately following the completion
of another command. Typically, there are no conditionals,
no loops, no constraints, etc.
The most notable properties of this approach are:

• Plans become inherently conservative, so as to be
conformant to expected outcomes. For example,
activities are assumed to take the longest they can
possibly take.

• The on-board health monitoring system is limited to
general responses to failures, which often leads to
unnecessary execution aborts and spacecraft
operations halts. For example, a certain failure might
lead to abandoning the whole plan, whereas portions
of the plan could still be safely continued.

Virtual Machine Language (VML) [14] is a sequencing
language that has flown on numerous NASA spacecraft.
VML is currently in use on the Spitzer space telescope,
Mars Odyssey, Mars Reconnaissance Orbiter, Dawn,
Genesis, and Stardust. It is slated for future New Frontier
and Discovery class missions, including the Mars Telecom
Orbiter and possibly the Mars Science Lander.

VML is an execution language that was developed to take
into account the needs of spacecraft operations. It provides
a "safe-sandbox", with the aim of shielding operations
personnel from most of the mistakes possible in
contemporary programming languages like C. Sequences
are procedural, and have symbolic names. At any time only
one instruction is active in a sequence engine (also known
as a virtual machine). The language accommodates a
variety of spacecraft commanding architectures. It features
absolute and relative constraints, event-driven sequencing,
programmable delays, arithmetic and bit-level operations,
parameters with polymorphism, and a number of numeric
and string data types. VML dynamically builds spacecraft
commands with values derived from variables, and has
reusable blocks that can be called or spawned from
sequences. The on-board sequencing component can also

 3

be configured to access telemetry values for use within
sequences.

The VML language is compiled to an uplinkable file form
in a Unix-based ground system by the VML Compiler. This
process translates human-readable text into a binary file for
interpretation onboard by the VML Flight Component. The
flight component is implemented in C for compatibility
with the widest possible range of missions. In addition, a
Unix tool known as Offline VM (OLVM) is available for
ground-based execution and debugging of developed blocks
and sequences. OLVM encapsulates the actual flight code
for high fidelity testing with very fast turnaround when
developing using VML.

Execution Systems

This section presents several NASA-relevant execution
systems, in alphabetical order.

Apex
Apex [10] is an execution system and has been used in
numerous large-scale applications including control of real
autonomous helicopters, control of simulated aircraft for
wildfire detection, and in simulating humans for Human
Computer Interface (HCI) analysis.

Apex is a reactive execution system that selects for
execution one or more procedures (partial plans) from its
library of procedures at each execution step. In most
applications Apex has been used as an execution-only
system. Apex is designed to unify plan-running and
mission-management functionality. Planners may be called
on to produce or extend a mission plan, to solve a local
planning problem within a mission plan or both. Apex may
therefore potentially be used as an execution system
coupled with an external planner.

The execution language used by Apex is the Procedure
Description Language (PDL). PDL can represent a
hierarchical decomposition of a high-level task into basic
primitives, event driven floating contingencies, and also
calls to Lisp (the underlying programming language). A
PDL procedure consists of a unique identifier, a description
of a class of goals the procedure applies to, and one or
more step clauses. The step clauses are concurrently
executable and may call other procedures (sub-tasks).

The input to Apex is a set of human-fabricated procedures
represented in PDL. Apex is a reactive system that chooses
an action at every execution step. Key capabilities of the
executive (and of PDL) are:

• Monitoring/querying for complex temporal events
patterns

• Opportunistic (reactive) task refinement and resource
allocation

• Management of concurrent and periodic tasks

Continuous reaction allows Apex to use the most recent
measurements to guide the selection of the next action. In
addition it allows dynamic update of high level goals. Apex
also provides a number of tools for debugging,
demonstration, and monitoring.

CRL and C-CRL Executive
The Contingent Rover Language (CRL) [4] is a declarative
plan execution language that was designed to represent
contingent plans. It uses a hierarchical representation and
can represent simple and floating branches, nesting,
flexible time, and state and resource conditions. The CRL
executive has been used on NASA’s Marsokhod, ATRV,
and K9 rovers as a high-level plan interpreter. It has also
been used with the Mission Simulation Facility (MSF)
rover simulator. C-CRL is an extension of CRL that is
capable of concurrent execution and has been used for the
single-cycle instrument placement demonstration on the K9
rover [21].

The CRL executive may be used as an execution-only
system with manually written CRL constructs. The external
planner that generates CRL plans is the PICO contingent
planner [5]. CRL does not support loops and periodic tasks,
or have a mechanism for providing feedback to planners.

IDEA
Intelligent Distributed Execution Architecture (IDEA) [20]
is a model-based planning and execution system. One of
the two glitches experienced by Remote Agent was due to
undocumented and subtle differences in semantics between
models in the planning, execution and diagnosis layers.
IDEA was developed to address this problem by building
an architecture that supports controllers/planners at
multiple levels of abstraction. Controllers (agents) at every
level of abstraction share the same model. The semantics of
the structure of a task, the structure of an execution cycle
responsible to activate a task in response to an
asynchronous or synchronous event, the structure of events
communicated between controllers, how the
communication of tasks maps into the transport layers
responsible of delivering them across agents, are thus
uniform. Each controller (control agent) at every level of
abstraction is assumed to perform planning as the sole
computational process to decide how to respond to events.

IDEA uses the classic sense-plan-act cycle. One of the
novel features in IDEA is the use of an on-board planner
from first principles (i.e., the sub-goaling model) to plan
for a limited horizon into the future and execute the current
task at hand simultaneously. The advantage is that this
allows it to dynamically update the plan based on the

 4

current state of the world and previous actions, which can
yield a wider range of robust behaviors than possible with
traditional execution scripts. The disadvantage of using
planning from first principle at every execution cycle is that
patterns of constraints (temporal and parametric) are
always assembled from scratch, causing higher latency than
possible when using pre-compiled execution scripts.
Consequently, execution may halt if the planner can’t
deliver a response in time. IDEA agents can also use an
arbitrary number of deliberative planners to optimize agent
behavior over a long, future horizon. IDEA is thus an
execution system with internal planner (reactive planners)
and may also be used as an execution system coupled with
an external planner (deliberative planners) at the same
time.

XIDDL is the execution language used in IDEA. It is a
modeling language amenable to temporal/hybrid planning
through subgoaling, used to describe the model of the
world, the internal logic and the input/output behavior of
each IDEA controller. This uniformity aims to facilitate
system-level validation for an autonomy system without the
need for understanding the details of each specific
controller, since it is expensive and error prone to assume
that mission personnel will examine software written in
different computer languages in order to ascertain its ability
to satisfy mission requirements. IDEA has been used for
autonomously controlling a telescope, PSA (personal
satellite assistant), and a number of mobile robots.

While IDEA is designed to use any planner that uses a
representation that is compatible with the XIDDL modeling
language, all of the IDEA systems developed so far use the
Europa planning technology [9] both for reactive and
deliberative planning.

MPE
Mission Planning and Execution (MPE) [1] is the execution
subsystem of the Mission Data System (MDS) [24]. MDS
uses an explicit state-based representation. Knowledge
about the spacecraft and the environment is provided by
state estimates. Knowledge about the behavior of the
system is stored in state models. Information is reported via
a history of states, measurements, and control commands.
The input to MPE is operator “intent” (expressed as
temporal constraints, and constraints on states), flight rules,
and hard constraints on variables. MPE is an execution
system with internal planner that can locally adapt the
original plan to recover from faults and handle uncertainty.

PROPEL
Program Planning and Execution Language (PROPEL)
[17] [18], is a unified planning and execution system that
uses a procedural representation. This is different from

IDEA, which exclusively uses a declarative action
representation.

The motivation was that since most software is not written
as a declarative model it tends to be outside the scope of a
planner’s reasoning. PROPEL was designed to increase the
scope of the planner’s model to include software in order to
address the problem of software failure detection and
recovery.

Propel was designed to close the gap between the
declarative action model used by a planner and the
procedural languages used to develop real-world software.
The representation is intended to be expressive enough to
be used in system software including the planner and
executive software. Motivation for using a procedural
representation includes:

• Desire to include all software within the planner’s
model in order to increase the scope of failure
recovery to include infrastructure software failures.

• Desire to represent complex procedures including
loops, conditionals, local variables, and
multiprocessing.

• Desire to reduce the need to develop and maintain
different models for the planner and execution
system.

• Reduce risk of loss of information in translation
between execution and planning (and vice versa).

Propel is both an architecture and a language. The
architecture provides integrated planning and execution
modules that monitor and manipulate application-level
processes written in the Propel language. The language is a
library of methods for embedding search and temporal
constraint information into C++, thus creating a "superset"
of C++ like TDL. This library provides an interface from
the Propel application code to the supervisory meta-
processes (the planning and execution modules), which
monitor the application to provide failure detection and
recovery.

The language provides an action representation that
captures control constructs and can also be projected by a
search-based planner. The planner can provide a useful
partial plan even when it is interrupted after an arbitrary
amount of computation. The planner and the controller
share identical data structures and algorithms for
interpreting a shared representation of control actions.
PROPEL is an execution system with internal planner.

PRS
The Procedural Reasoning System (PRS) [12] was
developed to address the problem encountered in
developing autonomous systems that were required to be
continuously active and have real-time response.
Traditional programming languages imposed an order on

 5

task execution through the language’s control structure that
makes it difficult to respond quickly to a large set of
possible events.

PRS is a reactive goal-driven system that selects
procedures (partial plans) from its library of procedures at
each execution step. PRS is an execution-only system.

PRS has a knowledge-base of procedures. Each procedure
requires the specification of an event, the state of the world
that will trigger that event, the steps that are executed by
the procedure, and the sub-goals that it achieves.

PRS has been used on a number of mobile robots and also
in a simulation of the space shuttle. PRS was originally
written in Lisp and is now known as PRS-CL. The C
version of it is called C-PRS or Propice [15].

RAP System
Reactive Action Package System (RAPs) [8] was designed
to support reactive planning and execution. It is a
representation language for general-purpose execution. It
uses a Lisp-based interpreter to manage a task network and
to interface to a behavioral layer. RAPs may thus be used
as an execution-only system or execution system coupled
with an external planner.

The main idea behind RAPs is that all capabilities of goal-
achieving behaviors – task decomposition, different tactics
for achieving a goal, monitoring, error recovery, checking
of pre- and post-conditions – should be represented in a
single “package.” Each RAPs is thus a self-contained
module that knows how to achieve a particular goal in the
face of uncertainty.

The RAPs execution system uses a library of goal-
achieving behaviors and a symbolic world database to
choose which RAPs to execute, how to decompose them,
and when they succeed or fail. The execution system
schedules RAPs according to their priority and temporal
constraints, interrupting execution of one RAP if higher
priority RAPs become active.

Remote Agent (RA) Executive
Remote Agent [22] is an AI system that flew on-board the
Deep Space One (DS-1) spacecraft in 1999. The main
characteristics of the Remote Agent are that it is model-
based with on-board planning, fault detection,
identification, and recovery.

The executive in the Remote agent [23] is the central
controller. The input to the Remote Agent executive is a
high-level state and duration for which the state must be
maintained. The executive autonomously calls the planner
to generate a plan to satisfy a high-level goal. It uses a
domain model to monitor plan execution and commands

the planner to generate an updated plan if any of the
constraints are violated during execution.

The Remote Agent executive was based on the Execution
Support Language (ESL) [11]. ESL is a declarative
execution language that is an extension of Lisp. It is
implemented as a set of macros that expand into Common
Lisp and invoke Lisp’s multi-tasking library. ESL provides
task-level control constructs, resource management, and a
database built on Prolog

The novel features demonstrated by the RA executive in
the DS-I experiment were integrated planning and
execution with low-latency response time to contingencies
and deficiencies in the plan and the lack of intervention
required by the human operator after issuing high level
mission goals. The RA executive is an execution system
with internal planner and also an execution system coupled
with an external planner at the same time.

One of the main challenges with this approach is building
and maintaining models. The emergent behavior that results
from subtle interactions between qualitative models of
weakly interacting subsystems is hard to predict since the
range of input conditions and responses are extremely
large. “Incorrect knowledge in the domain model could
endanger or even lose the mission” [2].

RMPL, Titan, Kirk, Moriarty
Titan [29] is a model-based execution system that supports
both execution control and model-based goal achievement
specifications. The execution control component generates
goal states, which are then given to the model-based goal
achievement component. The goal achievement
component uses automated diagnosis methods to estimate
the current state from observable data (mode
identification), and then uses automated planning (mode
reconfiguration) to generate command sequences to
achieve the given goals from the current state.

The execution language used in Titan is the Reactive
Model-based Programming Language (RMPL) [28]. It is
used to specify both the control information used by the
control component and the model-based state estimation
and planning component. The control information supports
control constructs such as loops, conditions, iterations and
contingencies, over model-based specifications of
concurrent and sequenced goals. The control elements of
RMPL are compiled into hybrid control automata (HCA),
while the mode identification and reconfiguration is
specified in terms of concurrent control automata (CCA).

Titan differs from Propel because it compiles procedural
constructs into a declarative model, which is then
interpreted by during execution. Titan is similar to IDEA
this way, but differs from IDEA by using an explicit
description of control behavior.

 6

The core Titan system and the RMPL language have been
extended to handle hybrid (continuous/discrete) state
information, resulting in a system called Moriarty. A
different extension, implemented in the Kirk execution
system [30], supports distributed cooperative execution.
Titan, Moriarty and Kirk may be described as execution
systems with internal planner.

RPL
Reactive Plan Language (RPL) [19] was inspired by RAP
and PRS. It is a Lisp-like language and includes rich set of
control constructs, such as conditionals, looping, and the
ability to specify “policies” that hold during the execution
of particular sub-tasks.

RPL was designed to support replanning and debugging of
task definitions [2]. Based on experience obtained during
execution and Monte-Carlo simulations of task execution,
situations can be identified where tasks are likely to fail.
Heuristic “critics” are then used modify the task (e.g.,
adding new constraints, adding new policies) in order to fix
the bugs found. RPL is an execution system with internal
planner.

TDL

The Task Description Language (TDL) [25] uses a
procedural representation to support plan execution. It is an
extension of C++, adding syntax for specifying high-level
control. A Java-based compiler translates TDL into pure
C++, together with calls to a domain-independent task
management library. The resulting code can then be
compiled with any existing compiler and linked with
existing C++ code. There are options in the language to
specify that the resulting code should be threaded and/or
distributed (the latter used for coordinating multiple robots.

TDL provides the ability to represent high-level control
constructs including task decomposition, task coordination
and synchronization, execution monitoring and exception
handling, as well as distributed coordination between
multiple agents. Being an extension of C++ makes it very
easy to integrate TDL into projects – developers can use as
much, or as little, of the TDL functionality as they need to
augment the standard C++ functionality.

High level control constructs are represented in TDL as
task-trees. Task trees represent the execution trace of
hierarchical plans and are created dynamically at run time.
The task-tree decomposition can be created from
conditional and recursive task representations. The
temporal constraints in the task-tree decomposition
(partially) order task execution. Planning and sensing are
treated as schedulable activities. In other words, the
executive runs the main loop and calls the planner when
required. TDL is an execution system coupled with an

external planner. In several projects, a symbolic Plan
Representation Language (PRL) was used to transfer data
between a planner and a TDL-based executive [13] To
date, TDL has been used in about a dozen mobile robot and
autonomous system projects at various universities and
institutions, including several NASA rovers [7].

Universal-Executive
The Universal-Executive is currently under development in
a collaborative effort of researchers at NASA Ames
Research Center, NASA’s Jet Propulsion Laboratory and
Carnegie-Mellon University. It is being designed to
facilitate reuse and inter-operability of execution and
planning frameworks. Plan execution systems often have a
close relation to the planners that they are associated with,
which makes information sharing between different
execution and decision-making systems difficult.

The Universal-Executive builds on the Coupled Layer
Architecture for Robotic Autonomy (CLARAty) [27],
which is a two layer software architecture that was
developed to enable both a plug-and-play capability and a
tighter coupling of high level decision making planners and
the interface to hardware. The CLARAty architecture has
successfully enabled interoperability at the Functional
Layer, which is the interface to the hardware. Current
work, including the development of the Universal
Executive, is addressing this same goal at the Decision
Layer.

The execution language to be used in the Universal-
Executive is called Plan Execution Interchange Language
(PLEXIL). PLEXIL extends many execution control
capabilities of other systems. The key characteristics of
PLEXIL are that it is compact, semantically clear, and
deterministic given the same sequence of events. At the
same time, the language is quite expressive and can
represent simple branches, floating branches, loops, time
and event driven activities, concurrent activities, sequences,
and temporal constraints.

The input to the Universal-Executive will be a PLEXIL
representation of an execution control instance and a
description of relevant domain information. Execution
nodes describe both initiation of real-world actions, and the
control of execution. The nodes are arranged into
hierarchical trees where leaf nodes are action nodes and
internal nodes are control nodes. This is different from
TDL, where task trees are a type rather than an instance.

The execution of each node is governed by a set of
conditions, such as when the node gets activated and when
it is done. The Universal-Executive will be capable of
executing multiple nodes concurrently. When action nodes
are executed, commands are sent to the rover, whereas

 7

when internal nodes are executed, they are expanded to the
next level of nodes in the tree.

The expressiveness of the language enables the Universal
Executive to handle dynamic outcomes and environmental
uncertainty. The executive can also provide execution
information and outcomes back to higher-level systems.
Consequently, it can be used both as a stand-alone
execution-only system, and as an execution system coupled
with an external planner.

Conclusions

The demands of future NASA spacecraft and robotic
missions dictate an execution system that has great
flexibility, expressiveness, and ease of use. This paper has
presented a number of execution systems and execution
languages that are relevant to NASA-type missions.

Acknowledgements: We thank Emmanuel Benazera,
Howard Cannon, Mike Freed, Nicola Muscettola, Corina
Pasareanu, and Rich Volpe for many useful discussions and
all the attendees of the “Workshop on Existing Planning
and Execution Systems”, Nov 16, 2004 at NASA Ames
Research Center, which motivated this paper. In addition,
Mike Freed, Chris Grasso, and Nicola Muscettola provided
invaluable comments on this paper.

References

1. Barrett A., Knight R., Morris R., Rasmussen R., Mission

Planning and Execution Within the Mission Data System,
International Workshop on Planning and Scheduling for
Space (IWPSS 2004). Darmstadt, Germany, June 2004.

2. Beetz M. and McDermott D., Declarative goals in
reactive plans, In James Hendler (ed.), Proc. First Int.
Conf. on AI Planning Systems, San Mateo: Morgan
Kaufmann, pp.~3--12

3. Bernard D. et al. Final Report on the Remote Agent
Experiment, NMP DS-1 Technology Validation
Symposium Feb 8th and 9th 2000, Pasadena, CA

4. Bresina J.L. and Washington, R., Robustness via Run-
time Adaptation of Contingent Plans, In Proceedings of
the AAAI-2001 Spring Syposium: Robust Autonomy.
Stanford, CA

5. Dearden R., Meuleau N., Ramakrishnan S., Smith D.,
and Washington R., Incremental Contingency Planning,
ICAPS-03 Workshop on Planning under Uncertainty,
Trento, Italy, June 2003.

6. Drummond M., Bresina J., Kedar S., The Entropy
Reduction Engine: Integrating Planning, Scheduling, and
Control, in SIGART Bulletin 2, 1991, 48-52

7. Estlin T., Gaines D., Chouinard C., Fisher F., Castano
R., Judd M., Anderson R., and Nesnas I.. "Enabling
Autonomous Rover Science Through Dynamic Planning
and Scheduling," Proceedings of 2005 IEEE Aerospace
Conference, Big Sky, Montana, March, 2005.

8. Firby J, Adaptive Execution in Complex Dynamic
Domains, Ph.D. Thesis, Yale University Technical
Report YALEU/CSD/RR #672 January 1989

9. Frank J., and Jonsson A. K., Constraint-based Attribute
and Interval Planning, in Constraints, 8(4), p 339-364,
2003.

10. Freed M., Managing Multiple Tasks in Complex,
Dynamic Environments. In Proceedings of the 1998
National Conference on Artificial Intelligence. Madison,
WI. 1998

11. Gat E.. ESL: A Language for Supporting Robust Plan
Execution in Embedded Autonomous Agents, Proc. AAAI
Fall Symposium on Plan Execution, Boston MA, October
1996.

12. Georgeff M. and Lansky A., Procedural Knowledge,
in Proceedings of the IEEE Special Issue on Knowledge
Representation, Volume 74, pages 1383-1398, 1986.

13. Goldberg D., Cicirello V., Dias M. B., Simmons R.,
Smith S., and Stentz A., Market-Based Multi-Robot
Planning in a Distributed Layered Architecture, In
Proceedings of the Multi-Robot Systems Workshop,
Washington, D.C., March 17-19, 2003

14. Grasso C., The Fully Programmable Spacecraft:
Procedural Sequencing for JPL Deep Space Missions
Using VML (Virtual Machine Language), IEEE
Aerospace Applications Conference Proceedings, march
2002

15. Ingrand F., R. Chatila, R. Alami and F. Robert, PRS:
A High Level Supervision and Control Language for
Autonomous Mobile Robots, IEEE ICRA 96,
Minneapolis, USA.

16. Kim P., Williams B., Abramson M., 2001. Executing
Reactive, Model-based Programs through Graph-based
Temporal Planning. IJCAI '01. AAAI, Menlo Park, CA.

17. Levinson R., A General Programming Language for
Unified Planning and Control. Artificial Intelligence,
special issue on Planning and Scheduling, Vol. 76.
Elsevier Press. July 1995.

18. Levinson R., Unified Planning and Execution for
Autonomous Software Repair. ICAPS 2005. Workshop
on Plan Execution: A Reality Check. 2005.

19. McDermott D., A Reactive Plan Language, Research
Report YALEU/DCS/RR864 Yale University 1991

20. Muscettola N., Dorais G., Fry C., Levinson R., and
Plaunt C., "IDEA: Planning at the Core of Autonomous
Agents," (AAAI 2001)

21. Pedersen L., Smith D., Deans M., Sargent R., Kunz
C., Lees D. and Rajagopalan S., Mission planning and
target tracking for autonomous instrument placement,
2005 IEEE Aerospace Conference.

22. Pell B., Bernard D.E., Chien S. A., Gat E., Muscettola N.,
Nayak P. P., Wagner M. D., and Williams B. C.. A Remote
Agent Prototype for Spacecraft Autonomy. In Proceedings of the

 8

SPIE Conference on Optical Science, Engineering, and
Instrumentation, 1996.

23. Pell B., Gamble E., Gat E., Keesing R., Kurien J.,
Millar B., Nayak P. P., Plaunt C., and Williams B., A
Hybrid Procedural/Deductive Executive For Autonomous
Spacecraft. In Proceedings of the Second International
Conference on Autonomous Agents, Minneapolis, MI
1998

24. Rasmussen R., Goal-Based Tolerance for Space
Systems Using the Mission Data System, In Proceedings
of the 2001 IEEE Aerospace Conference.

25. Simmons R. and Apfelbaum D.. A Task Description
Language for Robot Control, Proceedings of Conference
on Intelligent Robotics and Systems, Vancouver Canada,
October 1998.

26. Simon D., Espiau B., Kapellos K., Pissard-Gibollet R.
, Orccad: Software Engineering for Real-time Robotics, A
Technical Insight, Robotica, Special issues on Languages
and Software in Robotics, vol 15, no 1, pp 111-116

27. Volpe R., Nesnas I. A. D., Estlin T., Mutz D., Petras
R., Das H., The CLARAty Architecture for Robotic
Autonomy. Proceedings of the 2001 IEEE Aerospace
Conference, Big Sky Montana, March 10-17 2001.

28. Williams B. C., Ingham M., Chung S. H., and Elliott
P. H., January 2003. Model-based Programming of
Intelligent Embedded Systems and Robotic Space
Explorers, invited paper in Proceedings of the IEEE:
Special Issue on Modeling and Design of Embedded
Software, vol. 9, no. 1, pp. 212-237.

29. Williams B. C., Ingham M., Chung S., Elliott P., and
Hofbaur M., Model-based Programming of Fault-Aware
Systems, AI Magazine, vol. 24, no. 4, Winter 2004, pp.
61-75.

30. Kim P., Williams B. C. and Abramson M, 2001,
Executing Reactive, Model-based Programs through
Graph-based Temporal Planning, Proceedings of the
International Joint Conference on Artificial Intelligence,
Seattle, Wa.

